Annals of Discrete Mathematics 23 (1984) 509-522
© Elsevier Science Publishers B.V. (North-Holland) 509

TWO OPEN PROBLEMS IN PRECEDENCE CONSTRAINED
SCHEDULING

J.K. Lenstra

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam

A.H.G. Rinnooy Kan

Erasmus University
P.O. Box 1738, 3000 DR Rotterdam

The computational complexity of a machine scheduling problem can be
affected in various ways if a partial order is imposed on the set of jobs that
has to be executed. Some typical complexity results for such problems are dis-
cussed in the light of two prominent open problems in this area: the minimiza-
tion of total tardiness for unit-time jobs on a single machine subject to chain-
like precedence constraints, and the minimization of maximum completion
time for unit-time jobs on three identical parallel machines subject to arbitrary
precedence constraints.

RESUME

La théorie de V'ordonnancement traite de laffectation temporelle de res-
sources limitées 4 des activités. Dans ce contexte, des ordres partiels
apparaissent de facon naturelle: un ordre partiel sur ’ensemble des activites
impose des contraintes sur l'ordre dans lequel les activités doivent &tre
exécutées et il reduit ainsi 'ensemble des affectations admissibles. L’intérét du
probleme consiste & incorporer ces contraintes de précédence de maniere aussi
efficace que possible dans des algorithmes destinés a déterminer une affecta-
tion admissible qui soit optimale par rapport & un certain critere.

Leffet des contraintes de précédence peut &tre double. Si le probleme sans
contraintes peut &tre résolu par une méthode efficace, alors leur adjonction
conduira & modifier I'algorithme. Dans certains cas, cette adaptation n’affecte
pas Vefficacité de lalgorithme. Dans d’autres, Iefficacité est diminuée au point

510 J.K. Lenstra, A.H.G. Rinnooy Kan

que parfois la nouvelle méthode de résolution revient 4 énumeérer entierement
les affectations admissibles. Si le probleme sans contraintes de précédence est
déja si compliqué qu’une approche par énumération semble inévitable, on peut
tabler sur le fait que 'addition de contraintes de précédence peut réduire le
nombre d’affectations admissibles. Dans le premier cas, les contraintes rendent
le probleme plus difficile; dans le second, le probleme devient un peu plus sim-
ple.

En termes de complexité de calcul, Taddition de contraintes de précédence
peut transformer un probleme bien soluble en un probleme NP-dur, ou encore
rendre un probleme d’ordonnancement NP -dur plus facile & résoudre en pra-
tique.

Nous nous concentrerons sur le premier phénomeéne et nous lillustrerons
dans le cas ou les ressources limitées correspondent a des machines
M, ..., M, dont chacune peut traiter au plus I'une des activités ou tdches
J1 .. .,J, alafois. De nombreux problémes spécifiques ont pu étre formulés
et étudiés dans ce cadre général.

Le critére d’optimalité qui doit étre minimisé joue un rodle proéminent dans
ce contexte. Pour chaque ordonnancement admissible conduisant a un temps
de fin d’exécution C; pour J; (j = l,...,n), on fait 'hypothese fondamentale
que le critere est une fonction non décroissante de chacune des variables
Cy ..., C,. Nousen donnerons des exemples plus loin.

Parmi les caractéristiques relatives aux taches qui définissent des types par-
ticuliers de problemes, on peut avoir des contraintes de précédence de la forme
J; — Ji Cest-a-dire que J; doit &tre terminée avant que J; puisse commencer.
De telles contraintes ont été abondamment étudiées et certains types de con-
traintes de précédence ont &té mis en évidence. En termes du graphe de
précedence G dont les sommets sont 1,..,n et dont les arcs sont les paires
(j k) telles que J; — J, on S’est surtout intéressé au cas ou G est une collec-
tion de chaines, une forét ou un graphe série-paralléle. Beaucoup d’autres cas
particuliers entre un graphe sans arcs et un graphe arbitraire ont aussi été
examines.

En géneral, I'effort principal a été mis sur la détermination d’une frontiere
aussi bien delimitée que possible entre les problemes bien solubles et les
problemes NP-durs. Ceci a éte fait en déterminant le cas le plus genéral de
contraintes de précédence qui peuvent &tre traitées en temps polynomial et le
cas le plus simple qui conduit 2 un probleme NP-dur. Dans cette note, nous
nous concentrerons sur deux problemes ouverts connus: d’une part la minimi-
sation du retard total pour des tiches de durée unité a exécuter sur une
machine avec des contraintes de précédence définies par des chaines; d’autre
part, la minimisation du maximum des temps d’exécution sur trois machines
paralleles identiques avec des contraintes de précédence quelconques. Les
résultats connus pour des problemes voisins seront passés en revue et
généralisés a l'aide de deux nouvelles preuves de NP -difficulté.

Two open problems in precedence constrained scheduling 511

1. INTRODUCTION

The theory of scheduling is concerned with the allocation over time of
scarce resources to activities. In this context, partial orders arise in a natural
fashion: a partial order on the activity set imposes constraints on the order in
which the activities can be executed and as such delimits the set of feasible
allocations. The challenge is to incorporate these precedence constraints as effi-
ciently as possible in algorithms designed to determine a feasible allocation
that is optimal with respect tG some criterion.

The effect of precedence constraints can be twofold. If the problem without
precedence constraints can be solved efficiently, their addition will generally
require the algorithm to be adapted. In some cases, this adaptation does not
affect the efficiency of the algorithm; in other cases, it does, possibly to the
point that the new solution method amounts to complete enumeration of all
feasible allocations. If the unconstrained problem is already so difficult in
itself that an enumerative approach seems unavoidable, one may capitalize on
the addition of precedence constraints by exploiting the fact that they reduce
the number of feasible allocations. In the former case, precedence constraints
make the problem harder to solve; in the latter case, it becomes a little easier.

The theory of computational complexity of combinatorial problems has
served to formalize the preceding informal discussion. We will settle here for a
very brief review of the main concepts of this theory and refer the reader for
more details to [Cook 1971; Karp 1972] (the first two papers on the subject),
[Garey & Johnson 1979] (a comprehensive textbook) and [Lawler & Lenstra
1982] (a survey likely to be readily available to the current readership).

The size of a combinatorial problem is defined as the number of bits
needed to encode its data, and the running time of an algorithm as the number
of elementary operations (such as additions and comparisons) required for its
solution.

If a problem of size s can be solved by an algorithm with running time
O(p(s)) where p is a polynomial function, then the problem is said to be well
solvable; there are good theoretical and practical justifications for this notion.
Many problems have been shown to be well solvable, simply by the construc-
tion of a polynomial-time algorithm.

Only few problems have been proved to be not well solvable, but there is a
large class of problems for which it is strongly suspected that this is indeed the
case. These are the NP-hard problems, which share a notorious reputation for
computational intractability as well as the property that a polynomial-time
algorithm for any one of them would yield polynomial-time algorithms for all
problems in an important subclass, the NP-complete problems — a very
unlikely event.

512 J.K. Lenstra, A.H.G. Rinnooy Kan

One establishes NP -hardness of a problem P by taking another .
problem Q and showing that Q is reducible to P (Q «P), i.e., that
instance of Q a corresponding instance of P can be constructed in po
time such that solving the latter will solve the former as well. This img
Q is a special case of P, and since Q is NP-hard, P is NP-hard to
recipe obviously does not apply to the first NP-hardness proof — for
[Cook 1971].)

Rephrased more formally, then, the addition of precedence constra
turn a well-solvable problem into an NP-hard one, or may make an .
scheduling problem easier to solve in practice.

We shall focus on the former phenomenon, and illustrate it for
that the scarce resources correspond to machines My, . . ., M,,, each
can handle at most one of the activities or jobs J,,...,J, at a time
this general setting, many specific problem types have been formul:
studied. For a detailed problem classification and a survey of the co
results in this area, we refer to [Graham et al. 1979; Lawler ef al. 1982]

A prominent role in this classification is played by the optimality
to be minimized. With every feasible schedule leading to a completion
for J; (j=1,..,n), the basic assumption is that the criterion is a fur
C), ..., C,, nondecreasing in every variable. We shall encounter
examples below.

Among the various job characteristics that further specify a probl
there may be precedence constraints of the form J;—J,, signifying the
to be completed before J, can start. Such constraints have long f
research subject in the area, whereby several types of precedence co
have been distinguished. In terms of the precedence graph G with v
{1,...n} and arc set {(j.,k): J;—J; }, separate attention has been pai
case that G is a collection of chains, a forest, or series-parallel. Ma
special cases inbetween an empty and an arbitrary arc set have been
gated as well.

In general, the effort has been to draw as sharp a borderline as
between well-solvable and NP-hard problems, by identification of 1
general type of precedence constraints that can be coped with in po
time versus the simplest type that leads to NP-hardness. For a revie
results obtained so far, we refer to [Lawler & Lenstra 1982]. In this
concentrate on two prominent open problems in this area, while s
known related results.

2. A SINGLE MACHINE PROBLEM

Let us assume that there is a single machine (m =1) and that each

Two open problems in precedence constrained scheduling 513

jobs J; (j=1...,n) has to spend an uninterrupted processing time of p; time
units on the machine. Each J; becomes available for processing at time 0 and
incurs, upon its completion at time C;, a tardiness cost T; = max{0,C; —d;},
where d; is a given due date. The criterion to be minimized is the total tardi-
ness 27 T;.

This is perhaps the most notorious open problem in single machine
scheduling theory. It can be solved by dynamic programming techniques in
0(n42pj) time [Lawler 1977]; although the running time is obviously exponen-
tial in the problem size (which is O(Z(log p; +log d;))), the algorithm in ques-
tion is called pseudopolynomial since the running time is polynomial in the
problem data themselves.

We will concentrate on the special case of unit-time jobs, ie., p;=1
(=1...n). The cost ¢;; of scheduling J; in the i-th position is now given by
¢;; = max{0,i —dj}, and the problem is to find a permutation o of {1,...,n}
minimizing 27_ ¢;y;- 1f there are no precedence constraints, this is an ordi-
nary linear assignment problem, which can be solved in O(n %) time (see, e.g.,
[Lawler 1976]). If arbitrary precedence constraints between the jobs are
allowed, the problem becomes NP-hard [Lenstra & Rinnooy Kan 1978]. It is
not known, however, what the effect of chain-like precedence constraints is,
and this is our first open problem:

Given a directed graph G with vertex set {1,..,n} in which each vertex j has an
associated integer d;, indegree at most one and outdegree at most one, find a per-
mutation ¢ of {1,..,n} satisfying o(j) < o(k) whenever (j k) is an arc of G, such
that 27~ max{0,0(j)—d, } is minimized.

An optimality criterion related to the total tardiness Z T; is the number of
late jobs EUj, where U, = 0 if ¢ < dj, U =1 if C > d;. Since we know
of no problem type for which minimizing 2U; is harder than minimizing 27
and since the problem of minimizing 2U; for unit-time jobs on a single
machine subject to chain-like precedence constraints is NP-hard [Lenstra &
Rinnooy Kan 1980], the most plausible conjecture is that the above problem
will eventually turn out to be NP-hard.

Three immediate generalizations of our open problem are worth consider-
ing:

(1) The processing times p; (j =1,..,n) are arbitrary nonnegative integers. The
resulting problem is NP-hard (Theorem 1).

(2) EachJ; (j=1,..,n) has to be completed no later than a given deadline ¢;
(not to be confused with the due date d;). This problem is NP-hard as
well (Theorem 2).

(3) Each J; (j=1,..,n) becomes available for processing at a given release

514 J.K. Lenstra, A.H.G. Rinnooy Kan

date r;. This problem is still open and, of course, also suspected to be
NP-hard.
As a preparation for the proofs of Theorems 1 and 2, we recall an NP-
hardness result for the fotal weighted tardiness criterion 27y w; T;, where w; is
a given weight of Jj (G =1..n).

Lemma 1 [Lawler 1977; Lenstra et al. 1977]. The problem of scheduling jobs
with arbitrary processing times on a single machine in the absence of precedence
constraints so as to minimize total weighted tardiness 2 w; T, is NP-hard.

Proof [Lenstra & Rinnooy Kan 1980]. We have to show that a known NP-
hard problem is reducible to the = w;T; problem. Our starting point will be
the following NP-hard problem [Garey & Johnson 1979]:
3-PARTITION: Given a set § = {1,..,3t} and positive integers
a...,ay, b with ab <a; <%b forall jES and 2;¢5 a; = 1b, does S
have a partition into ¢ 3-element subsets S; such that = jes a4 = b
I =0,.,t—1)?
Given any instance of 3-PARTITION, we construct an instance of the
Z w; T; problems as follows:
- there are 4t —1 jobs;
- for each j €S, there is a job J; with processing time p; = a;, due date
d; = 0 and weight w; = a;;
- for each i € {1,..,r—1}, there is a job J’; with processing time p’; = 1,
due date &; = i(b +1) and weight w; =

We claim that 3-PARTITION has a solution if and only if there exists a
schedule with value Zw,T; <y, where y = Z\qj<r<3aa +%(—ib.
This would imply that a polynomial-time algorithm for the = w; T; problem
could be used to solve 3-PARTITION in polynomial time as well and there-
fore prove the theorem.

Let us first ignore the jobs J’; (i =1,...,t —1). Since d; = 0 for all j €S,
we have Z;cg w,T; = 3¢5 w; C;; moreover, since p; = w; for all j €S, the
value of 3¢ w;C; is not influenced by the ordering of S. That is, for any
schedule of the jobs J; (j €S') without machine idle time we have

2 W_,Tj, = 2 aj ay.
JjES 1<j<k<3t

Let us now calculate the effect of inserting a job J7; in such a schedule.
Suppose that J; is completed at time C'; and define L', = ¢ —d';. Since all
Jobs J; (j €S) that are processed after J'; are completed one time unit later,

the value of ;5 w; T} is increased by the total weight of these jobs, and we
have

Two open problems in precedence constrained scheduling 515

SwTi+w. T, = 3 aa+b+l-d,—L,;+2max{0,L};}
JES I<j<k <3t
= Z ajak +tb+l"’d,1+!L,,l
1<j<k <3t

More generally, insertion of all jobs J';, resulting in completion times
C; =d;+L; (i=1,..—1)such that C'" ;)< -+ <’y) for some permu-
tation 7 of {1,...,t —1}, yields a schedule with value

t—1
2wl = X aat+ Jh+i—d g+l

l<j<k<3 i=1

t—1
i=1
irrespective of the permutation 7.

It follows that a schedule has value £ w;T; < y if and only if there is no
idle time and moreover the jobs J; are completed at times
C; =d; =i(b+1) (i=1,.,t—1). Such a schedule exists if and only if the
jobs J; (j ES) can be divided into ¢ groups, each containing 3 jobs and
requiring b units of processing time, i.e., if and only if 3-PARTITION has a
solution. [J

The proof of Lemma 1 provides the basis for our proofs of Theorems 1 and
2. We will specify reductions from 3-PARTITION to both £ T; problems in
which the number of jobs created is O(th) and O (tb?) respectwely This may
raise some eyebrows, as the size of an instance of 3-PARTITION is only
O(t log b). However, 3-PARTITION has been shown to be NP-hard even
when problem size is measured in a pseudopolynomial fashion as O (1b) [Garey
& Johnson 1979], and hence the reductions below suffice to establish NP-
hardness.

Theorem 1. The problem of scheduling jobs with arbitrary processing times on a
single machine subject to chain-like precedence constraints so as to minimize total
tardiness 2 T; is NP-hard.

Proof. Given any instance of 3-PARTITION, we first construct an instance of
the 3 w; T; problem as in the proof of Lemma 1 and then transform it into an
mstance of the 2T problem with chain-like precedence constraints as follows.
Each job J; with processmg time p;, due date d; and weight w; (whether it is a
”pa.rtmon” jobJ; jES)ora ”sphttmg” _]Ob J’ i=1,..t— 1)) is rcplaced by
a chain of w; umt-welght jobs. The first job in the chain has processing time p;
and due date d;, the next w; —1 ones have processing times 0 and due dates

d;.

516 J.K. Lenstra, A.H.G. Rinnooy Kan

The resulting problem instance has b +2(r —1) jobs. Given any feasible
schedule in which the jobs of some chain are not scheduled consecutively, one
can obtain another schedule by processing all the zero-time jobs of that chain
directly after its first job. This schedule is still feasible, and its 2 7; value has
not increased. Hence, each chain of length w; can be considered as a single job
with weight w;, and we are back at our original construction.

The reader who dislikes zero-time jobs could quite easily replace them by
unit-time jobs and multiply the lengths of the other jobs by a factor polyno-
mial in ¢ and b such that the equivalence argument still carries through. U

Theorem 2. The problem of scheduling unit-time jobs on a single machine subject
to arbitrary deadlines e; and chain-like precedence constraints so as to minimize
total tardiness X T; is NP-hard.

Proof. Our proof is again related to the proof of Lemma 1, although it is not
such a straightforward extension as the proof of Theorem 1. Given any
instance of 3-PARTITION, we construct an instance of the = T; problem with
unit-time jobs, deadlines and chain-like precedence constraints as follows:

- there are n =th*+1 —1 jobs;

- for each j €S, there is a chain J of ba; unit-time jobs:

Jj = Jj(l)-) e '—)Jj(bal)9
with due dates and deadlines defined by

dj(k) =n (k —],,(b — l)aj)’ dj(baj"l) = —] (l :aj -],...,O)a
ej(k) =n (k =1,...,baj);

- for each i €{l,..,t —1}, there is a unit-time job J’; with due date and
deadline defined by &; = ¢; = i(b*+1).

We claim that 3- PARTITION has a solution if and only if there exists a
feasible schedule with value 2= T; <z, where z =bZ k<
aja; +'(t —1)b. Before we prove this clalm we make some introductory
remarks about the way in which the job weights occurring in the proof of
Lemma 1 have been simulated in the present construction. For each chain J
(j €8), the due dates have been spemfled such that in any schedule w1thout
machine idle time only the last a; jobs in the chain contribute to the criterion;
if all these jobs are completed one time unit later, this adds a; units to = 7},
which corresponds to the original weight wj = g;. For each job J’
(i=1,...,t —1), we previously used a weight w’; =2 in combination with an
upper bound y on Z w;T; to enforce an implicit deadline &';; we now simply
have an explicit deadline ¢/; = &';.

Consider any feasible schedule with value 2 7; < z. Without loss of gen-

Two open problems in precedence constrained scheduling 517

erality, we assume that the schedule contains no machine idle time, that each
job J'; (i=1,..,t—1) is completed at time &;, and that the chains J GESs)
do not preempt each other; the latter two statements can be proved by means
of simple interchange arguments. The jobs J’; (i =1,...,t —1) do not contribute
to the 2 T; value of the schedule. The contribution of the chains fj Ges)
consists of two terms.

First, there is the total tardiness of all jobs in the chains when the chains
are processed from time 0 onwards without interruption. It is not hard to see
that this term is given by b3, < j<k<3 44, irrespective of the ordering of S.

Secondly, there is the increase in total tardiness due to the insertion of the
jobs J'; in the intervals [—1,d;] = [d;_;+b%d;] (i=1,..,t —1), where
do= 0. Let S; C S denote the index subset of chams that are completed in
the interval [d;,d; +b?%), and let 4; = Zcg, a; (i = —1). Note that b4, _,
1s equal to the total length of all chains completed in the final interval
[d,-}, ", _1+b?, so that A,_; = b. More generally, we have that
SIZ Ay =ib (=1, — I). Since all chain lengths as well as the interval
lengths are integer multiples of b, we know that, if j €S;, the last b jobs of f
and in particular the last a; ones (the only ones that contribute to 2 T}) must
be processed in [d;,d'; +b2] so that J; contributes ia; additional units to 2T;.
Thus, the second term is given by

t=1 =1 -1 r=1

4= 3 A= ib = Ya(t —)b
i=0 i=1h=1—i i=1
It follows that 2 7; < z if and only i = b (i=0,..,t—1), ie., if and
only if 3-PARTITION has a solution . (J

3. A PARALLEL MACHINE PROBLEM

We now assume that there are m machines and n jobs J; (j =1,..,n). The
machines are parallel in the sense that each job can be assigned to any one of
them, and they are identical in the sense that, when J; is assigned to some
machine, it requires an uninterrupted processing time p;, irrespective of the
machine. The criterion to be minimized is the maximum completion time
C'max ma-xl<j <n {C }

If arbitrary processing times are allowed, the problem is already NP-hard if
m = 2 and no precedence constraints are specified. This generalizes the PAR-
TITION problem of splitting a set of numbers into two subsets with equal
sums, which is known to be NP-hard [Karp 1972].

We will, once again, concentrate on the case of unit-time jobs. We first
state three classical results on minimizing Cp,, for unit-time jobs on m identi-

518 J.K. Lenstra, A.H.G. Rinnooy Kan

cal parallel machines subject to precedence constraints, specified in the form of

a directed graph G:

(1) If m is arbitrary (i.e., specified as part of the problem instance) and G is
an inforest (each vertex has outdegree at most one) or an outforest (each
vertex has indegree at most one), the problem is solvable in O(n) time
[Hu 1961].

(2) If m=2 and G is arbitrary, the problem is also well solvable; algorithms
that have subsequently been developed require O(n®) time [Fujii et al
1969, 1971], O(n*) time [Coffman & Grahman 1972], “almost linear” time
[Gabow 1982], and O(n) time [Gabow & Tarjan 1983].

(3) If m and G are arbitrary, the problem is NP-hard [Ullman 1975].

These results do not resolve the complexity status of the problem if G is
arbitrary and m 1is fixed but greater than 2. In particular, the case that

m = 3 has withstood all attacks, and this is our second open problem:

Given a directed graph G with vertex set {1,..,n}, find the minimum value of C
for which there exists a function o:{1,..,n} — {1,..,C} satisfying o(j) < o(k)
whenever (j,k) is an arc of G and |{j € {1,.,n}: 0(j) = t}| < 3 for all
t €{1,.C}

In the course of research on this problem, progress has been made for
several special types of precedence constraints other than forests. We mention
the following results.

(4) Let the height h of G be defined as the number of arcs in a longest path
in G. If m is arbitrary and 4 =2, the problem is still NP-hard, and there
exists no polynomial-time (approximation) algorithm that guarantees a
relative error less than one third of the optimal C,,, value unless all NP-
complete problems are well solvable [Lenstra & Rinnooy Kan 1978]. If
both m and h are fixed, the problem is well solvable in O (n"™ V1)
time [Dolev& Warmuth 1982B].

(5) Suppose G is an interval order: each vertex j corresponds to an interval

[a;,b;] on the real line and (j,k) is an arc of G whenever b <a. In
this case, the problem is solvable in O(n?) time [Papadimitriou & Yan-
nakakis 1979].

(6) Suppose G is a level order: any two incomparable vertices with a common
predecessor or successor have identical sets of predecessors and successors.
If m is fixed, this problem is well solvable in O(n™™ ") time [Dolev &
Warmuth 1982C].

(7) Suppose G is an opposing forest, consisting of the disjoint union of an
inforest and an outforest. If m is arbitrary, this problem is NP-hard
[Garey et al. 1983, Mayr 1981]. If m is fixed, it is well solvable in
O(nz’"_zlog n) time [Dolev & Warmuth 1982C]. If m = 3, there is an

Two open problems in precedence constrained scheduling 519

O (n) algorithm [Garey et al. 1983; Dolev & Warmuth 1982A].

These results give little additional insight into the complexity status of the
three-machine problem with arbitrary precedence constraints. Recent rumors
on a proof of its well-solvability have not been substantiated so far, but such a
proof should be extendable to the case that m is any fixed constant. We
believe that the problem stands a good chance to be the seventh one to be
removed from the list of twelve open problems in [Garey & Johnson 1979].

4. CONCLUDING REMARKS

The above discussion has illustrated that very detailed insights exist on the
way in which partial orders on the job set affect the computational complexity
of machine scheduling problems. The two problems considered in the preced-
ing two sections figure prominently on the list of open problems that is pro-
duced by the computer program MSPCLASS [Lageweg et al. 1981,1982]. This
program keeps track of the complexity status of 4,536 machine scheduling
problems, 390 of which are currently still open. Resolution of many of these
problems, in particular of the two above ones, would seem to require the
development of new algorithmic approaches or transformation techniques.

ACKNOWLEDGEMENTS

We are grateful to D. de Werra who translated our extended abstract into a
résumé détaillé. Our research was supported by NSF grant MCS78-20054.

REFERENCES

E.G. COFFMAN, JR. & R.L. GRAHAM (1972) Optimal scheduling for two-
processor systems. Acta Informat. 1, 200-213.

S.A. COOK (1971) The complexity of theorem-proving procedures. Proc. 3rd
Annual ACM Symp. Theory of Computing, 151-158.

D. DOLEV & M.K. WARMUTH (1982A) Scheduling flat graphs. Research
Report RJ3398, IBM, San Jose, CA.

D. DOLEV & M.K. WARMUTH (1982B) Sceduling precedence graphs of
bounded height. Research Report RJ3399, IBM, San Jose, CA; J. Algo-
rithms, to appear.

D. DOLEV & M.K. WARMUTH (1982C) Profile scheduling of opposing
forests and level orders. Research Report RJ 3553, IBM, San Jose, CA.

520 J.K. Lenstra, A.H.G. Rinnooy Kan

M. FUJII, T. KASAMI & K. NINOMIYA (1969,1971) Optimal sequencing of
two equivalent processors. SIAM J. Appl. Math. 17, 784-789. Erratum.
20, 141.

H.N. GABOW (1982) An almost-linear algorithm for two-processor schedul-
ing. J. Assoc. Comput. Mach. 29, 766-780.

H.N. GABOW & R.E. TARJAN (1983) A linear-time algorithm for a special
case of disjoint set union. Proc. 15th Annual ACM Symp. Theory of
Computing, 246-251.

M.R. GAREY & D.S. JOHNSON (1979) Computers and Intractability: a Guide
to the Theory of NP-Completeness, Freeman, San Francisco.

M.R. GAREY, D.S. JOHNSON, R.E. TARJAN & M. YANNAKAKIS (1983)
Scheduling opposing forests. SIAM J. Algebraic Discrete Methods 4,
72-93.

RLL. GRAHAM, E.L. LAWLER, JK. LENSTRA & A H.G. RINNOOY
KAN (1979) Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. Ann. Discrete Math. 5, 287-326.

T.C. HU (1961) Parallel sequencing and assembly line problems. Oper. Res. 9,
841-848.

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.E.
MILLER, JW. THATCHER (eds.) (1972) Complexity of Computer
Computations, Plenum, New York, 85-103.

B.J. LAGEWEG, E.L. LAWLER, JK. LENSTRA & A.H.G. RINNOOY
KAN (1981) Computer aided complexity classification of deterministic
scheduling problems. Report BW 138, Mathematisch Centrum, Amster-
dam.

BJ. LAGEWEG, J.K. LENSTRA, E.L. LAWLER & A.H.G. RINNOOY
KAN (1982) Computer aided complexity classification of combinatorial
problems. Comm. ACM 25, 817-822.

E.L. LAWLER (1976) Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart & Winston, New York.

E.L. LAWLER (1977) A "pseudopolynomial” algorithm for sequencing jobs to
minimize total tardiness. Ann. Discrete Math. 1, 331-342.

E.L. LAWLER & J.K. LENSTRA (1982) Machine scheduling with precedence
constraints. In: I. RIVAL (ed.) (1982) Ordered Sets, Reidel, Dordrecht,
655-675.

EL. LAWLER, J K. LENSTRA & A.H.G. RINNOOY KAN (1982) Recent
developments in deterministic sequencing and scheduling: a survey. In:
M.AH. DEMPSTER, JK. LENSTRA & AH.G. RINNOOY KAN

Two open problems in precedence constrained scheduling 521

(eds.) (1982) Deterministic and Stochastic Scheduling, Reidel, Dordrecht,
35-73.

J.K. LENSTRA & A H.G. RINNOOY KAN (1978) Complexity of scheduling
under precedence constraints. Oper. Res. 26, 22-35.

JK. LENSTRA & A.H.G. RINNOOY KAN (1980) Complexity results for

scheduling chains on a single machine. European J. Oper. Res. 4, 270-
275.

J.K. LENSTRA, A.H.G. RINNOOY KAN & P. BRUCKER (1977) Complex-
ity of machine scheduling problems. Ann. Discrete Math. 1, 343-362.

E. MAYR (1981) Well structured parallel programs are not easier to schedule.
Report STAN-CS-81-880, Department of Computer Science, Stanford
University.

C.H. PAPADIMITRIOU & M. YANNAKAKIS (1979) Scheduling interval-
ordered tasks. SIAM J. Comput. &, 405-409.

J.D. ULLMAN (1975) NP-Complete scheduling problems. J. Comput. System
Sci. 10, 384-393.

